Department of Statistics -statistics Seminar – Fall 2014 Tingting Zhang (university of Virginia) " a Dynamic Directional Model for Effective Brain Connectivity Using Electrocorticographic (ecog) Time Series " "fiber Direction Estimation in Diffusion Mri"

نویسندگان

  • Tingting Zhang
  • Ping Li
چکیده

Projections of countries' future populations, broken down by age and sex, are widely used for planning and research. They are mostly done deterministically, but there is a widespread need for probabilistic projections. I will describe a Bayesian statistical method for probabilistic population projections for all countries. These new methods have been used by the United Nations to produce their most recent population projections for all countries. 10/27/2014 Venkat Chandrasekaharn (Caltech) Title: Latent Variable Graphical Model Selection via Convex Optimization Suppose we have a Gaussian graphical model with sample observations ofonly a subset of the variables. Can we separate the extra correlations induced due to marginalization over the unobserved, hidden variables from the structure among the observed variables? In other words is it still possible to consistently perform model selection despite the unobserved, latent variables? As we shall see the key problem that arises is one of decomposing the concentration matrix of the observed variables into a sparse matrix (representing graphical model structure among the observed variables) and a low rank matrix (representing the effects of marginalization over the hidden variables). Such a decomposition can be accomplished by an estimator that is given by a tractable convex program. This estimator performs consistent model selection in the high-dimensional scaling regime in which the number of observed/hidden variables grows with the number of samples of the observed variables. The geometric aspects of our approach are highlighted, with the algebraic varieties of sparse matrices and of low rank matrices playing an important role. Bio: Venkat Chandrasekaran is an Assistant Professor at Caltech in Computing and Mathematical Sciences and in Electrical Engineering. He received a Ph.D. in Electrical Engineering and Computer Science in June 2011 from MIT, and he received a B.A. in Mathematics as well as a B.S. in Electrical and Computer Engineering in May 2005 from Rice University. He was awarded the Jin-Au Kong Dissertation Prize for the best doctoral thesis in Electrical Engineering at MIT (2012), the Young Researcher Prize in Continuous Optimization at the Fourth International Conference on Continuous Optimization of the Mathematical Optimization Society (2013, awarded once every three years), an Okawa Research Grant in Information and Telecommunications (2013), and an NSF CAREER award (2014). His research interests lie in mathematical optimization and its application to the information sciences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dynamic Directional Model for Effective Brain Connectivity using Electrocorticographic (ECoG) Time Series.

We introduce a dynamic directional model (DDM) for studying brain effective connectivity based on intracranial electrocorticographic (ECoG) time series. The DDM consists of two parts: a set of differential equations describing neuronal activity of brain components (state equations), and observation equations linking the underlying neuronal states to observed data. When applied to functional MRI...

متن کامل

Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions

Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...

متن کامل

Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...

متن کامل

Depth of anesthesia estimation based on EEG signal using brain effective connectivity between frontal and temporal regions

Background: Ensuring adequate depth of anesthesia during surgery is essential for anesthesiologists to prevent the occurrence of unwanted alertness during surgery or failure to return to consciousness. Since the purpose of using anesthetics is to affect the central nervous system, brain signal processing such as electroencephalography (EEG) can be used to predict different levels of anesthesia....

متن کامل

Assessment of Anesthesia Depth Using Effective Brain Connectivity Based on Transfer Entropy on EEG Signal

Introduction: Ensuring an adequate Depth of Anesthesia (DOA) during surgery is essential for anesthesiologists. Since the effect of anesthetic drugs is on the central nervous system, brain signals such as Electroencephalogram (EEG) can be used for DOA estimation. Anesthesia can interfere among brain regions, so the relationship among different areas can be a key factor in the anesthetic process...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015